Part Number Hot Search : 
2SC82 LM331 STV223XD 4AC15 ENA1379 MA8910 RM16M23K MC10H145
Product Description
Full Text Search
 

To Download BTT6030-1EKA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  automotive power data sheet profet?+ 24v rev. 1.1, 2015-03-04 BTT6030-1EKA smart high-side power switch single channel, 31 m profet?+ 24v
data sheet 2 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA table of contents 1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 voltage and current definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 general product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3.1 pcb set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3.2 thermal impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 output on-state resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.2 turn on/off characteristics with resistive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3 inductive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3.1 output clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3.2 maximum load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.4 inverse current capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.5 electrical characteristics power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6 protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.1 loss of ground protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.2 undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.3 overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.4 reverse polarity protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.5 overload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.5.1 current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.5.2 temperature limitation in the power dmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.6 electrical characteristics fo r the protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7 diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.1 is pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.2 sense signal in different operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.3 sense signal in the nominal current range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.3.1 sense signal variation as a func tion of temperature and load current . . . . . . . . . . . . . . . . . . . 29 7.3.2 sense signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.3.3 sense signal in open load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.3.3.1 open load in on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.3.3.2 open load in off diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.3.3.3 open load diagnostic timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.3.4 sense signal with out in short circuit to v s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.3.5 sense signal in case of overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.3.6 sense signal in case of inverse current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.4 electrical characteristics diagnostic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8 input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.1 input circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.2 den pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 table of contents
BTT6030-1EKA table of contents data sheet 3 rev. 1.1, 2015-03-04 profet?+ 24v 8.3 input pin voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.4 electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9 characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.1 general product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.1.1 minimum functional supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.1.2 undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9.1.3 current consumption channel active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.1.4 standby current for whole device with load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.2 power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.2.1 output voltage drop limitation at lo w load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 9.2.2 drain to source clamp volt age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 9.2.3 slew rate at turn on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.2.4 slew rate at turn off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.2.5 turn on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 9.2.6 turn off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.2.7 turn on / off matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 9.2.8 switch on energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9.2.9 switch off energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 9.3 protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.3.1 overload condition in the low voltage area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.3.2 overload condition in the high voltage area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.4 diagnostic mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.4.1 current sense at no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.4.2 open load detection threshold in on state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 9.4.3 sense signal maximum voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.4.4 sense signal maximum current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.5 input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.5.1 input voltage threshold on to off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.5.2 input voltage threshold off to on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.5.3 input voltage hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9.5.4 input current high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10 application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 10.1 further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 11 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 12 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
pg-dso-14-47 ep type package marking BTT6030-1EKA pg-dso-14-47 ep BTT6030-1EKA data sheet 4 rev. 1.1, 2015-03-04 profet?+ 24v smart high-side power switch BTT6030-1EKA 1overview application ? suitable for resistive, indu ctive and capacitive loads ? replaces electromechanical relays, fuses and discrete circuits ? most suitable for loads with high inrush current, such as lamps ? suitable for 24v truck and transportation system basic features ? one channel device ? very low stand-by current ? 3.3 v and 5 v compatible logic inputs ? electrostatic discha rge protection (esd) ? optimized electromagnetic compatibility ? logic ground independent from load ground ? very low power dmos leakage current in off state ? green product (rohs compliant) ? aec qualified description the BTT6030-1EKA is a 31 m single channel smart high-side power switch, embedded in a pg-dso-14-47 ep, exposed pad package, providing protective function s and diagnosis. the power transistor is built by an n-channel vertical power mosfet with charge pump. the device is integrated in smart6 technology. it is specially designed to drive lamps up to 3 x p21w 24v or 1 x 70w 24v, as well as leds in the harsh automotive environment. table 1 product summary parameter symbol value operating voltage range v s(op) 5 v ... 36 v maximum supply voltage v s(ld) 65 v maximum on state resistance at t j = 150 c r ds(on) 62 m nominal load current i l(nom) 6 a typical current sense ratio k ilis 2200 minimum current limitation i l5(sc) 60 a maximum standby current with load at t j = 25 c i s(off) 0.5 a
BTT6030-1EKA overview data sheet 5 rev. 1.1, 2015-03-04 profet?+ 24v diagnostic functions ? proportional load current sense ? open load in on and off ? short circuit to battery and ground ? overtemperature ? stable diagnostic signal during short circuit ? enhanced k ilis dependency with temperature and load current protection functions ? stable behavior during undervoltage ? reverse polarity protection with external components ? secure load turn-off during logic gr ound disconnect with external components ? overtemperature protection with latch ? overvoltage protection with external components ? voltage dependent current limitation ? enhanced short circuit operation
data sheet 6 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA block diagram 2 block diagram figure 1 block diagram for the BTT6030-1EKA block diagram.emf v s out in t driver logic gate control & charge pump load current sense and open load detection over temperature clamp for inductive load over current switch limit forward voltage drop detection voltage sensor gnd esd protection is den internal power supply
BTT6030-1EKA pin configuration data sheet 7 rev. 1.1, 2015-03-04 profet?+ 24v 3 pin configuration 3.1 pin assignment figure 2 pin configuration 3.2 pin definitions and functions pin symbol function cooling tab v s voltage supply; battery voltage 1, 2, 7, 8, 9, 13, 14 nc not connected; no internal connec tion to the chip 3gnd ground; ground connection 4in input channel; input signal for channel activation 5den diagnostic enable; digital signal to e nable/disable the diagnosis of the device 6is sense; sense current of the selected channel 10, 11, 12 out output; protected high side power output channel 1) 1) all output pins must be connec ted together on the pcb. all pins of the output are internally connected together. pcb traces have to be designed to withstand the maximum current which can flow. pinout single so14.vsd nc nc out out out nc nc nc nc gnd in den is nc 14 13 12 11 10 9 8 1 2 3 4 5 6 7
data sheet 8 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA pin configuration 3.3 voltage and current definition figure 3 shows all terms used in this data sheet, wit h associated convention for positive values. figure 3 voltage and current definition v s in den is gnd out i in i den i is v s v in v den v is i s i gnd v ds v out i out voltage and current convention single.vsd
BTT6030-1EKA general product characteristics data sheet 9 rev. 1.1, 2015-03-04 profet?+ 24v 4 general product characteristics 4.1 absolute maximum ratings table 2 absolute maximum ratings 1) t j = -40 c to +150c; (unless otherwise specified) parameter symbol values unit note / test condition number min. typ. max. supply voltages supply voltage v s -0.3 ? 48 v ? p_4.1.1 reverse polarity voltage - v s(rev) 0?28v t < 2 min t a = 25 c r l 12 r gnd = 150 p_4.1.2 supply voltage for short circuit protection v bat(sc) 0?36 v r ecu = 20 m r cable = 16 m /m l cable = 1 h/m, l = 0 or 5 m see chapter 6 and figure 52 p_4.1.3 supply voltage for load dump protection v s(ld) ? ? 65 v 2) r i = 2 r l = 12 p_4.1.12 short circuit capability permanent short circuit in pin toggles n rsc1 ?100k cycles 3) v supply = 28v p_4.1.4 input pins voltage at input pin v in -0.3 ? ?6 7 v? t < 2 min p_4.1.13 current through input pin i in -2 ? 2 ma ? p_4.1.14 voltage at den pin v den -0.3 ? ?6 7 v? t < 2 min p_4.1.15 current through den pin i den -2 ? 2 ma ? p_4.1.16 sense pin voltage at is pin v is -0.3 ? v s v ? p_4.1.19 current through is pin i is -25 ? 50 ma ? p_4.1.20 power stage load current | i l |?? i l(lim) a ? p_4.1.21 power dissipation (dc) p tot ??1.6w t a = 85 c t j < 150 c p_4.1.22 maximum energy dissipation single pulse e as ??85mj i l(0) = 6 a t j(0) = 150 c v s = 28 v p_4.1.23 voltage at power transistor v ds ? ? 65 v ? p_4.1.26
data sheet 10 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA general product characteristics notes 1. stresses above the ones listed here may cause perma nent damage to the device. exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. integrated protection func tions are designed to prevent ic destructi on under fault conditions described in the data sheet. fault conditions are considered as ?outside? normal operating range. pr otection functi ons are not designed for continuous repetitive operation. currents current through ground pin i gnd -20 -200 ?20 20 ma ? t < 2 min p_4.1.27 temperatures junction temperature t j -40 ? 150 c ? p_4.1.28 storage temperature t stg -55 ? 150 c ? p_4.1.30 esd susceptibility esd susceptibility (all pins) v esd -2 ? 2 kv 4) hbm p_4.1.31 esd susceptibility out pin vs. gnd and v s connected v esd -4 ? 4 kv 4) hbm p_4.1.32 esd susceptibility v esd -500 ? 500 v 5) cdm p_4.1.33 esd susceptibility pin (corner pins) v esd -750 ? 750 v 5) cdm p_4.1.34 1) not subject to production test. specified by design. 2) v s(ld) is setup without the dut connect ed to the generator per iso 7637-1. 3) threshold limit for short circuit failures : 100ppm. please re fer to the legal disclaimer for short circuit capability at the end of this document. 4) esd susceptibility hbm accord ing to ansi/esda/jedec js-001 5) esd susceptibility, charge device model ?cdm? esda stm5.3.1 or ansi/esd s.5.3.1 table 2 absolute maximum ratings (cont?d) 1) t j = -40 c to +150c; (unless otherwise specified) parameter symbol values unit note / test condition number min. typ. max.
BTT6030-1EKA general product characteristics data sheet 11 rev. 1.1, 2015-03-04 profet?+ 24v 4.2 functional range table 3 functional range t j = -40 c to +150c ; (unless otherwise specified) parameter symbol values unit note / test condition number min. typ. max. nominal operating voltage v nom 8 28 36 v ? p_4.2.1 extended operating voltage v s(op) 5?48 v 2) v in = 4.5 v r l = 12 v ds < 0.5 v see figure 15 p_4.2.2 minimum functional supply voltage v s(op)_min 3.8 4.3 5 v 1) v in = 4.5 v r l = 12 from i out = 0 a to v ds < 0.5 v; see figure 15 p_4.2.3 undervoltage shutdown v s(uv) 2.5 3.5 4.1 v 1) v in = 4.5 v v den = 0 v r l = 12 from v ds < 1 v; to i out = 0 a see figure 15 see figure 30 1) test at t j = -40c only p_4.2.4 undervoltage shutdown hysteresis v s(uv)_hys ? 850 ? mv 2) ? p_4.2.13 operating current channel active i gnd_1 ?4.89ma v in = 5.5 v v den = 5.5 v device in r ds(on) v s = 36 v see figure 31 p_4.2.5 standby current for whole device with load (ambiente) i s(off) ?0.10.5 a 1) v s = 36 v v out = 0 v v in floating v den floating t j 85 c see figure 32 p_4.2.7 maximum standby current for whole device with load i s(off)_150 ?315 a v s = 36 v v out = 0 v v in floating v den floating t j = 150 c see figure 32 p_4.2.10 standby current for whole device with load, diagnostic active i s(off_den) ?0.5?ma 2) v s = 36 v v out = 0 v v in floating v den = 5.5 v p_4.2.8
data sheet 12 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA general product characteristics note: within the functional range the ic operates as de scribed in the circuit description. the electrical characteristics are specifi ed within the conditions given in the re lated electrical ch aracteristics table. 4.3 thermal resistance 4.3.1 pcb set up figure 4 2s2p pcb cross section 2) not subject to production test. specified by design. table 4 thermal resistance parameter symbol values unit note / test condition number min. typ. max. junction to soldering point r thjs ?5?k/w 1) 1) not subject to production test. specified by design. p_4.3.1 junction to ambient r thja ?29?k/w 1) 2) 2) specified r thja value is according to jedec jesd51-2,-5,-7 at natu ral convection on fr4 2s2p board; the product (chip + package) was simulated on a 76.4 x 114.3 x 1. 5 mm board with 2 inner copper layers (2 x 70 m cu, 2 x 35 m cu). where applicable, a thermal via array under the exposed pad co ntacts the first inner copper layer. please refer to figure 4 . p_4.3.2 1.5mm 70m 35m 0.3mm pcb 2 s2p .vsd
BTT6030-1EKA general product characteristics data sheet 13 rev. 1.1, 2015-03-04 profet?+ 24v figure 5 pc board top and bottom view for the rmal simulation with 600 mm2 cooling area 4.3.2 thermal impedance figure 6 typical thermal impedance. 2s2p set up according figure 4 thermique so14.vsd 1 2 3 4 5 6 7 14 13 12 11 10 9 8 cooling tab v s pcb top view pcb bottom view 40 50 60 70 80 90 100 h ja[k/w] 1s0pfootprint 1s0p300mm2 1s0p600mm2 2s2p 0 10 20 30 1,00e04 1,00e03 1,00e02 1,00e01 1,00e+00 1,00e+01 1,00e+02 1,00e+03 zt h time[s]
data sheet 14 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA general product characteristics figure 7 typical thermal resistance. pcb set up 1s0p 0 100 200 300 400 500 600 700 40 50 60 70 80 90 100 rthja [k/w] area [mm 2 ] footprint 1s0p
BTT6030-1EKA power stage data sheet 15 rev. 1.1, 2015-03-04 profet?+ 24v 5 power stage the power stage is built using an n-channel ve rtical power mosfet (dmos) with charge pump. 5.1 output on-state resistance the on-state resistance r ds(on) depends on the supply voltage as well as the junction temperature t j . shows the dependencies in terms of temperature and supply voltag e for the typical on-state resistance. the behavior in reverse polarity is described in chapter 6.4 . figure 8 typical on-state resistance a high signal (see chapter 8 ) at the input pin causes the power dmos to switch on with a dedicated slope, which is optimized in terms of emc emission. 5.2 turn on/off characteris tics with resistive load figure 9 shows the typical timing when switching a resistive load. figure 9 switching a r esistive load timing 0,03 0,04 0,05 0,06 r ds(on)[ohm] 150 25 40 0 0,01 0,02 0 5 10 15 20 25 30 35 40 45 50 r vs[v] 0,03 0,04 0,05 0,06 d s(on)_150[ohm] 8v 28v 36v 0 0,01 0,02 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 r d junctiontemperaturetj[c] 36v in t v out t on t on _ d el ay t off 90% v s 10% v s v in _ h v in _ l t switching times.vsd t off_delay 30% v s 70% v s dv/ dt on dv /dt off
data sheet 16 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA power stage 5.3 inductive load 5.3.1 output clamping when switching off inductive loads wit h high side switches, the voltage v out drops below ground potential, because the inductance intends to continue driving the current. to prevent the destr uction of the device by avalanche due to high voltages, there is a voltage clamp mechanism z ds(az) implemented that limits negative output voltage to a certain level ( v s - v ds(az) ). please refer to figure 10 and figure 11 for details. nevertheless, the maximum allowed load inductance is limited. figure 10 output clamp figure 11 switching an inductive load timing v bat v out i l l, r l v s out v ds logic in v in output clamp.svg z ds(az) gnd z gnd in v out i l v s v s -v ds(az) t t t switching an inductance.vsd
BTT6030-1EKA power stage data sheet 17 rev. 1.1, 2015-03-04 profet?+ 24v 5.3.2 maximum load inductance during demagnetization of in ductive loads, energy has to be dissipated in the bt t6030-1eka. this energy can be calculated with following equation: (1) following equation simplifies under the assumption of r l = 0 . (2) the energy, which is converted into heat, is limited by the thermal design of the component. see for the maximum allowed energy dissipation as a function of the load current. figure 12 maximum energy dissipation si ngle pulse, t j_start = 150 c; v s = 28v 5.4 inverse current capability in case of inverse current, meaning a voltage v inv at the output higher than the supply voltage v s , a current i inv will flow from output to v s pin via the body diode of the power transistor (please refer to figure 13 ). the output stage follows the state of the in pin, except if the in pi n goes from off to on during inverse. in that particular case, the output stage is kept off until the inverse current disappears. nevertheless, the current i inv should not be higher than i l(inv) . if the channel is off, the diagnostic will dete ct an open load at off. if the channel is on, the diagnostic will detect ope n load at on (the overtemperature sig nal is inhibited). at the appearance of v inv , a parasitic diagnostic can be observed. after, the di agnosis is valid and reflects the output state. at v inv vanishing, the diagnosis is valid and reflects the output state. duri ng inverse current, no protection functions are available. ev ds az () l r l ------ v s v ds az () ? r l -------------------------------- 1 r l i l v s v ds az () ? -------------------------------- ? ?? ?? ln i l + = e 1 2 -- - li 2 1 v s v s v ds az () ? -------------------------------- ? ?? ?? = 80 100 120 140 160 180 200 energy[mj] 0 20 40 60 0246810 il[a]
data sheet 18 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA power stage figure 13 inverse current circuitry out v s v bat i l(inv) ol comp. inverse current.svg v inv inv comp. gate driver device logic gnd z gnd
BTT6030-1EKA power stage data sheet 19 rev. 1.1, 2015-03-04 profet?+ 24v 5.5 electrical charact eristics power stage table 5 electrical characteristics: power stage v s = 8 v to 36 v, t j = -40 c to +150c (unless otherwise specified). typical values are given at v s = 28 v, t j = 25 c parameter symbol values unit note / test condition number min. typ. max. on-state resistance per channel r ds(on)_150 40 55 62 m i l = i l4 = 7 a v in = 4.5 v t j = 150 c see figure 8 p_5.5.1 on-state resistance per channel r ds(on)_25 ?31?m 1) t j = 25 c p_5.5.21 nominal load current i l(nom) ?6?a 1) t a = 85 c t j < 150 c p_5.5.2 output voltage drop limitation at small load currents v ds(nl) ?1022mv i l = i l0 = 50 ma see figure 33 p_5.5.4 drain to source clamping voltage v ds(az) = [ v s - v out ] v ds(az) 66 70 75 v i ds = 20 ma see figure 11 see figure 34 p_5.5.5 output leakage current t j 85 c i l(off) ?0.050.5 a 2) v in floating v out = 0 v t j 85 c p_5.5.6 output leakage current t j = 150 c i l(off)_150 ?310 a v in floating v out = 0 v t j = 150 c p_5.5.8 slew rate 30% to 70% v s d v /d t on 0.3 0.8 1.4 v/ s r l = 12 v s = 28 v see figure 9 see figure 35 see figure 36 see figure 37 see figure 38 see figure 39 p_5.5.11 slew rate 70% to 30% v s -d v /d t off 0.3 0.8 1.4 v/ s p_5.5.12 slew rate matching d v /d t on - d v /d t off d v /d t -0.15 0 0.15 v/ s p_5.5.13 turn-on time to v out = 90% v s t on 20 100 150 s p_5.5.14 turn-off time to v out = 10% v s t off 20 100 150 s p_5.5.15 turn-on / off matching t off - t on t sw -50 0 50 s p_5.5.16 turn-on time to v out = 10% v s t on_delay ? 30 70 s p_5.5.17 turn-off time to v out = 90% v s t off_delay ? 30 70 s p_5.5.18
data sheet 20 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA power stage switch on energy e on ?0.6 ?mj 1) r l = 12 v out = 90% v s v s = 36 v see figure 40 p_5.5.19 switch off energy e off ?0.7 ?mj 1) r l = 12 v out = 10% v s v s = 36 v see figure 41 p_5.5.20 1) not subject to production test, specified by design. 2) test at t j = -40c only table 5 electrical characteristics: power stage (cont?d) v s = 8 v to 36 v, t j = -40 c to +150c (unless otherwise specified). typical values are given at v s = 28 v, t j = 25 c parameter symbol values unit note / test condition number min. typ. max.
BTT6030-1EKA protection functions data sheet 21 rev. 1.1, 2015-03-04 profet?+ 24v 6 protection functions the device provides integrated protecti on functions. these functions are designed to prevent the destruction of the ic from fault conditions described in the data sheet. fault conditions are considered as ?outside? normal operating range. protection functions are designe d for neither continuous nor repetitive operation. 6.1 loss of ground protection in case of loss of the module ground and the load re mains connected to ground, th e device protects itself by automatically turning off (when it was previously on) or remains off, regardless of the voltage applied on in pin. in case of loss of device ground, it?s recommended to use input resistors between the microcontroller and the BTT6030-1EKA to ensure switching off of the channel. in case of loss of module or device ground, a current ( i out(gnd) ) can flow out of the dmos. figure 14 sketches the situation. z gnd is recommended to be a resistor in series to a diode. figure 14 loss of ground protection with external components 6.2 undervoltage protection between v s(uv) and v s(op) , the under voltage mechanism is triggered. v s(op) represents the minimum voltage where the switching on an d off can takes place. v s(uv) represents the minimum voltage the switch can hold on. if the supply voltage is below the undervoltage mechanism v s(uv) , the device is off (turns off). as soon as the supply voltage is above the undervoltage mechanism v s(op) , then the device can be s witched on. when the switch is on, protection functions are operational. nevertheless, the di agnosis is not guaranteed until v s is in the v nom range. figure 15 sketches the undervoltage mechanism. in den is zd esd gnd out v s v bat z d(az) logic loss of ground protection single.svg i out(gnd) z ds(az) r in r den r sense r is z is(az) z gnd l, r l
data sheet 22 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA protection functions figure 15 undervoltage behavior 6.3 overvoltage protection there is an integrated clamp mechan ism for overvoltage protection (z d(az) ). to guarantee this mechanism operates properly in the application, the current in the zener diode has to be limited by a ground resistor. figure 16 shows a typical application to withstand overvoltage issues. in case of supply voltage higher than v s(az) , the power transistor switches on and the voltage across the logic section is clamped. as a result, the internal ground potential rises to v s - v s(az) . due to the esd zener diodes, the potential at pin in and den rises almost to that potential, depending on the impedance of the connected circuitry. in the case the device was on, prior to overvoltage, the BTT6030-1EKA remains on. in the case the BTT6030-1EKA was off, prior to overvoltage, the power transistor can be activated. in the case the supply voltage is in above v bat(sc) and below v ds(az) , the output transistor is still operational and follo ws the input. if the channel is in th e on state, paramet ers are no longer guaranteed and lifetime is reduced compared to the nomi nal supply voltage range. this especially impacts the short circuit robustness, as well as the maximum energy e as capability. figure 16 overvoltage protecti on with external components under voltage behavior . vsd v o u t = v s v out v s(op) v s(uv) v s in den is zd esd gnd out v s v bat z d(az) logic z ds(az) in0 in1 r in r den r sense r is i sov z is(az) l, r l z gnd
BTT6030-1EKA protection functions data sheet 23 rev. 1.1, 2015-03-04 profet?+ 24v 6.4 reverse polarity protection in case of reverse polarity, the intrinsic body diode of the power dmos causes power dissipation. the current in this intrinsic body diode is limited by the load itself. addi tionally, the current into the ground path and the logic pins has to be limited to the maximum current described in chapter 4.1 with an external resistor. figure 17 shows a typical application. r gnd resistor is used to limit the current in the zener protection of the device. resistors r den and r in are used to limit the current in the logic of the device and in the esd protection stage. r sense is used to limit the current in the sense transistor which behaves as a diode. the recommended value for r den = r in = r sense = 10 k . z gnd is recommended to be a resistor in series to a diode. during reverse polarity, no protection functions are available. figure 17 reverse polarity protection with external components 6.5 overload protection in case of overload, such as high inru sh of cold lamp filamen t, or short circuit to grou nd, the btt60 30-1eka offers several protection mechanisms. 6.5.1 current limitation at first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the maximum current allowed in the switch i l(sc) . during this time, the dmos temper ature is increasing, which affects the current flowing in the dmos. the current limitation value is v ds dependent. figure 18 shows the behavior of the current limitation as a function of the drain to source voltage. in den is zd esd gnd out v s -v s(rev) z d(az) logic reverse polarity single.svg z ds(az) in0 r in r den r sense r is v ds(rev) micro controller protection diodes z is(az) z gnd l, r l
data sheet 24 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA protection functions figure 18 current limitation (typical behavior) 6.5.2 temperature limita tion in the power dmos the channel incorporates both an absolute ( t j(sc) ) and a dynamic ( t j(sw) ) temperature sensor. activation of either sensor will cause an overheated channel to switch off to preven t destruction. any protective switch off latches the output until the temperature has reached an acceptable value. figure 19 gives a sketch of the situation. no retry strategy is implemented such that when the dmos temperature has cooled down enough, the switch is switched on again. only the in pin signal toggli ng can re-activate the power stage (latch behavior). 0 10 20 30 40 50 60 70 80 3 8 13 18 23 28 33 38 43 48 current limit i l(sc) (a) drain source voltage v ds (v)
BTT6030-1EKA protection functions data sheet 25 rev. 1.1, 2015-03-04 profet?+ 24v figure 19 overload protection note: for better understanding, the time scale is not linear. the real timing of this drawing is application dependant and cannot be described. in t i l t i l(x)sc i is t 0a i is(fault) v den t 0v t dmos t t a t j(sw) hard start.vsd t sis(fault) i l(nom) i l(nom) / k ilis t sis (oc _blank) t j(sc) t sis (of f) load current limitation phase load current below limitation phase temperature protection phase
data sheet 26 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA protection functions 6.6 electrical characteristi cs for the protection functions table 6 electrical characteristics: protection v s = 8 v to 36 v, t j = -40 c to +150c (unless otherwise specified). typical values are given at v s = 28 v, t j = 25 c parameter symbol values unit note / test condition number min. typ. max. loss of ground output leakage current while gnd disconnected i out(gnd) ?0.1?ma 1) 2) v s = 48 v see figure 14 1) all pins are disconnected except v s and out. 2) not subject to production test, specified by design p_6.6.1 reverse polarity drain source diode voltage during reverse polarity v ds(rev) 200 610 700 mv i l = - 4 a t j = 150 c see figure 17 p_6.6.2 overvoltage overvoltage protection v s(az) 65 70 75 v i sov = 5 ma see figure 16 p_6.6.3 overload condition load current limitation i l5(sc) 60 74 88 a 3) v ds = 5 v see figure 42 3) test at t j = -40c only p_6.6.4 load current limitation i l28(sc) ?40?a 2) v ds = 42 v see figure 43 p_6.6.7 dynamic temperature increase while switching t j(sw) ?80?k 4) see figure 19 4) functional test only p_6.6.8 thermal shutdown temperature t j(sc) 150 170 4) 200 4) c 5) see figure 19 5) test at t j = +150c only p_6.6.10 thermal shutdown hysteresis t j(sc) ? 30 ? k 5) 4) see figure 19 p_6.6.11
BTT6030-1EKA diagnostic functions data sheet 27 rev. 1.1, 2015-03-04 profet?+ 24v 7 diagnostic functions for diagnosis purpose, the b tt6030-1eka provides a combination of digital and an alog signals at pin is. these signals are called sense. in case the diagnostic is dis abled via den, pin is becomes high impedance. in case den is activated, the sense current of the channel is enabled. 7.1 is pin the BTT6030-1EKA provides a sense current written i is at pin is. as long as no ?hard? failure mode occurs (short circuit to gnd / current limitation / ov ertemperature / excessive dynamic tem perature increase or open load at off) a proportional signal to the load current (ratio k ilis = i l / i is ) is provided. the complete is pin and diagnostic mechanism is described on figure 20 . the accuracy of the sense current depends on temperature and load current. due to the esd protection, in connection to v s , it is not recommended to share the is pin with other devices if these devices are using a nother battery feed. the consequence is that the unsupplied device would be fed via the is pin of the supplied device. figure 20 diagnostic block diagram v s i is(fault) i is = i l / k ilis den is sense schematic single.svg 1 0 0 1 fault z is(az)
data sheet 28 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA diagnostic functions 7.2 sense signal in different operating modes table 7 gives a quick reference for the state of the is pin during device operation. table 7 sense signal, function of operation mode operation mode input level channel x den output level diagnostic output normal operation off h z z short circuit to gnd ~ gnd z overtemperature z z short circuit to v s v s i is(fault) open load < v ol(off) > v ol(off) 1) 1) with additional pull-up resistor. z i is(fault) inverse current ~ v inv i is(fault) normal operation on ~ v s i is = i l / k ilis current limitation < v s i is(fault) short circuit to gnd ~ gnd i is(fault) overtemperature t j(sw) event z i is(fault) short circuit to v s v s i is < i l / k ilis open load ~ v s 2) 2) the output current has to be smaller than i l(ol) . i is < i is(ol) inverse current ~ v inv i is < i is(ol) 3) 3) after maximum t inv . underload ~ v s 4) 4) the output current has to be higher than i l(ol) . i is(ol) < i is < i l / k ilis don?t care don?t care l don?t care z
BTT6030-1EKA diagnostic functions data sheet 29 rev. 1.1, 2015-03-04 profet?+ 24v 7.3 sense signal in th e nominal current range figure 21 and figure 22 show the current sense as a function of the load current in the power dmos. usually, a pull-down resistor r is is connected to the current sense is pin. this resistor has to be higher than 560 to limit the power losses in the sense circ uitry. a typical value is 1.2 k . the blue curve represents the ideal sense current, assuming an ideal k ilis factor value. the red curves shows the accuracy the device provide across full temperature range, at a defined current. figure 21 current sense for nominal load 7.3.1 sense signal variat ion as a function of temp erature and load current in some applications a better accuracy is required around half the nominal current i l(nom) . to achieve this accuracy requirement, a calibration on the application is possible. to avoid multiple calibration points at different load and temperature conditions, the BTT6030-1EKA allows limited derating of the k ilis value, at a given point ( i l3 ; t j = +25 c). this derating is described by the parameter k ilis . figure 22 shows the behavior of the sense current, assuming one calibration point at nominal load at +25 c. the blue line indicates the ideal k ilis ratio. the green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration point at nominal temperature and nominal battery voltage. the red lines indicate the k ilis accuracy without calibration. 0 1 2 3 4 5 6 7 8 9 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 i l [a] i is [ma] min/max sense current typical sense current BTT6030-1EKA
data sheet 30 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA diagnostic functions figure 22 improved current sense accuracy with one calibration point 7.3.2 sense signal timing figure 23 shows the timing during settlin g and disabling of the sense. figure 23 current sense settling / disabling timing 0 1 2 3 4 5 6 7 8 9 10 1000 1500 2000 2500 3000 3500 4000 i l [a] k ilis calibrated k ilis min/max k ilis typical k ilis BTT6030-1EKA v in t i l t i is t v den t t sis(on) t sis(off) t on 90% of i is static 90% of i l static t sis(on_den) t sis(lc) current sense settling disabling time .vsd t on t off
BTT6030-1EKA diagnostic functions data sheet 31 rev. 1.1, 2015-03-04 profet?+ 24v 7.3.3 sense signal in open load 7.3.3.1 open load in on diagnostic if the channel is on, a leakage curr ent can still flow through an open load, for exampl e due to humidity. the parameter i l(ol) gives the threshold of recognition fo r this leakage current. if the current i l flowing out the power dmos is below this value, the device recognizes a failure, if the den is sele cted. in that case, the sense current is below i is(ol) . otherwise, the minimum sense cu rrent is given above parameter i is(ol) . figure 24 shows the sense current behavior in this area. the red curve shows a typical product curve. the blue curve shows the ideal current sense ratio. figure 24 current sense ratio for low currents 7.3.3.2 open load in off diagnostic for open load diagnosis in off-state, an external output pull-up resistor ( r ol ) is recommended. for the calculation of pull-up resistor value, the leak age currents and the open load threshold voltage v ol(off) have to be taken into account. figure 25 gives a sketch of the situation. i leakage defines the leakage current in the complete system, including i l(off) (see chapter 5.5 ) and external leakages, e.g, due to humidity, corrosion, etc.... in the application. to reduce the stand-by current of the sy stem, an open load resistor switch s ol is recommended. if the channel is off, the output is no longer pulled down by the load and v out voltage rises to nearly v s . this is recognized by the device as an open load. the voltage threshold is given by v ol(off) . in that case, the sen se signal is switched to the i is(fault) . an additional r pd resistor can be used to pull v out to 0v. otherwise, the out pin is floating. this resistor can be used as well for short circuit to battery detection, see chapter 7.3.4 . i is i l sense for ol .vsd i l(ol) i is(ol)
data sheet 32 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA diagnostic functions figure 25 open load detection in off electrical equivalent circuit 7.3.3.3 open load diagnostic timing figure 26 shows the timing during either open load in on or off condition when the den pin is high. please note that a delay t sis(fault_ol_off) has to be respecte d after the falling edge of th e input, when applying an open load in off diagnosis request, otherwise the diagnosis can be wrong. figure 26 sense signal in open load timing out v s s ol v bat v ol(off) i leakage i is(fault) is i loff ol comp. open load in off.svg r ol r is r leakage gnd r pd z gnd v in t v out t i is t t sis(lc) t sis(fault_ol_on_off) error settling disabling time .vsd v s -v ol(off) r ds(on) x i l i out load is present open load shutdown with load t
BTT6030-1EKA diagnostic functions data sheet 33 rev. 1.1, 2015-03-04 profet?+ 24v 7.3.4 sense signal with out in short circuit to v s in case of a short circuit between the output-pin and the v s pin, all or portion (depending on the short circuit impedance) of the load current will flow thro ugh the short circuit. as a resul t, a lower current compared to the normal operation will flow through the dmos of the BTT6030-1EKA, which can be recognized at the sense signal. the open load at off detection circuitry ca n also be used to distinguish a short circuit to v s . in that case, an external resistor to ground r sc_vs is required. figure 27 gives a sketch of the situation. figure 27 short circuit to battery detecti on in off electrical equivalent circuit 7.3.5 sense signal in case of overload an overload condition is defined by a current flowing out of the dmos reaching the current limitation and / or the absolute dynamic temperature swing t j(sw) is reached, and / or the juncti on temperature reaches the thermal shutdown temperature t j(sc) . please refer to chapter 6.5 for details. in that case, the sense signal given is by i is(fault) when the diagnostic is selected. the device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic temperature condition has disappeared, the dmos is reactivated only when the in is toggled low to high. if the den pin is activated the sense follows the output st age. if no reset of the latch occurs, the device remains in the latching phase and i is(fault) at the is pin, eventhough the dmos is off. 7.3.6 sense signal in case of inverse current in the case of inverse curren t, the sense signal will indicate open load in off state and indicate open load in on state. v s v bat v ol(off) i is(fault) is ol comp. short circuit to vs.svg v bat out gnd r sc_vs r is z gnd
data sheet 34 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA diagnostic functions 7.4 electrical character istics diagnostic function table 8 electrical characteristics: diagnostics v s = 8 v to 36 v, t j = -40 c to +150c (unless otherwise specified). typical values are given at v s = 28 v, t j = 25 c parameter symbol values unit note / test condition number min. typ. max. load condition threshold for diagnostic open load detection threshold in off state v s - v ol(off) 4?6v v in = 0 v v den = 4.5 v p_7.5.1 open load detection threshold in on state i l(ol) 4?25 ma v in = v den = 4.5 v i is(ol) = 5 a see figure 24 see figure 45 p_7.5.2 sense pin is pin leakage current when sense is disabled i is_(dis) ??1 a v in = 4.5 v v den = 0 v i l = i l4 = 7 a p_7.5.4 sense signal saturation voltage v s - v is (range) 1?3.5v v in = 0 v v out = v s > 10 v v den = 4.5 v i is = 6 ma see figure 46 p_7.5.6 sense signal maximum current in fault condition i is(fault) 61540 ma v is = v in = 0 v v out = v s > 10 v v den = 4.5 v see figure 20 see figure 47 p_7.5.7 sense pin maximum voltage v is(az) 65 70 75 v i is = 5 ma see figure 20 p_7.5.3 current sense ratio signal in the nominal area, stable load current condition current sense ratio i l0 = 50 ma k ilis0 -50% 2400 +50% v in = 4.5 v v den = 4.5 v see figure 21 t j = -40 c; 150 c p_7.5.8 current sense ratio i l1 = 0.5 a k ilis1 -25% 2200 +25% p_7.5.9 current sense ratio i l2 = 2 a k ilis2 -12% 2200 +12% p_7.5.10 current sense ratio i l3 = 4 a k ilis3 -9% 2200 +9% p_7.5.11 current sense ratio i l4 = 7 a k ilis4 -8% 2200 +8% p_7.5.12 k ilis derating with current and temperature k ilis -5 0 +5 % 1) k ilis3 versus k ilis2 see figure 22 p_7.5.17 diagnostic timing in normal condition
BTT6030-1EKA diagnostic functions data sheet 35 rev. 1.1, 2015-03-04 profet?+ 24v current sense settling time to k ilis function stable after positive input slope on both input and den t sis(on) ??150 s 1) v den = v in = 0 to 4.5 v ; v s = 28 v r is = 1.2 k c sense < 100 pf i l = i l3 = 4 a see figure 23 p_7.5.18 current sense settling time with load current stable and transition of the den t sis(on_den) ??10 s v in = 4.5 v v den = 0 to 4.5 v r is = 1.2 k c sense < 100 pf i l = i l3 = 4 a see figure 23 p_7.5.19 current sense settling time to i is stable after positive input slope on current load t sis(lc) ??20 s v in = 4.5 v v den = 4.5 v r is = 1.2 k c sense < 100 pf i l = i l2 = 2 a to i l3 = 4 a ; see figure 23 p_7.5.20 diagnostic timing in open load condition current sense settling time to i is stable for open load detection in off state t sis(fault_ol_ off) ??100 s v in = 0v v den = 0 to 4.5 v r is = 1.2 k c sense < 100 pf v out = v s = 28 v see figure 26 p_7.5.22 diagnostic timing in overload condition current sense settling time to i is stable for overload detection t sis(fault) 0?150 s 1) v in = v den = 0 to 4.5 v r is = 1.2 k c sense < 100 pf v ds = 24 v see figure 19 p_7.5.24 current sense over current blanking time t sis(oc_blank) ? 350 ? s 1) v in = v den = 4.5 v r is = 1.2 k c sense < 100 pf v ds = 5 v to 0 v see figure 19 p_7.5.32 diagnostic disable time den transition to i is < 50% i l /k ilis t sis(off) 0?20 s v in = 4.5 v v den = 4.5 v to 0 v r is = 1.2 k c sense < 100 pf i l = i l3 = 4 a see figure 23 p_7.5.25 table 8 electrical characteristics: diagnostics (cont?d) v s = 8 v to 36 v, t j = -40 c to +150c (unless otherwise specified). typical values are given at v s = 28 v, t j = 25 c parameter symbol values unit note / test condition number min. typ. max.
data sheet 36 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA diagnostic functions 1) not subject to production test, specified by design
BTT6030-1EKA input pins data sheet 37 rev. 1.1, 2015-03-04 profet?+ 24v 8 input pins 8.1 input circuitry the input circuitry is compatible with 3.3 and 5 v microcontr ollers. the concept of the input pin is to react to voltage thresholds. an implemented schmitt trigger avoids any undef ined state if the voltage on the input pin is slowly increasing or decreasing. the output is either off or on but cannot be in a linear or undefined state. the input circuitry is compatible with pwm applications. figure 28 shows the electrical equivalent input circuitry. in case the pin is not needed, it must be left op ened, or must be connected to device ground (and not module ground) via an input resistor. figure 28 input pin circuitry 8.2 den pin the den pin enables and disables the diagnostic functiona lity of the device. the pin has the same structure as the input pin, please refer to figure 28 . 8.3 input pin voltage the in and den use a comparator with hysteresis. the s witching on / off takes place in a defined region, set by the thresholds v in(l) max. and v in(h) min. the exact value where the on and off take place are unknown and depends on the process, as well as the temperature. to avoid cross talk and parasitic turn on and off, a hysteresis is implemented. this ensures a certain immunity to noise. gnd in input circuitry.vsd
data sheet 38 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA input pins 8.4 electrical characteristics table 9 electrical characteristics: input pins v s = 8 v to 36 v, t j = -40 c to +150c (unless otherwise specified). typical values are given at v s = 28 v, t j = 25 c parameter symbol values unit note / test condition number min. typ. max. input pins characteristics low level input voltage range v in(l) -0.3 ? 0.8 v see figure 48 p_8.4.1 high level input voltage range v in(h) 2 ? 6 v see figure 49 p_8.4.2 input voltage hysteresis v in(hys) ? 250 ? mv 1) see figure 50 1) not subject to production test, specified by design p_8.4.3 low level input current i in(l) 11025 a v in = 0.8 v p_8.4.4 high level input current i in(h) 21025 a v in = 5.5 v see figure 51 p_8.4.5 den pin low level input voltage range v den(l) -0.3 ? 0.8 v ? p_8.4.6 high level input voltage range v den(h) 2?6v? p_8.4.7 input voltage hysteresis v den(hys) ? 250 ? mv 1) p_8.4.8 low level input current i den(l) 11025 a v den = 0.8 v p_8.4.9 high level input current i den(h) 21025 a v den = 5.5 v p_8.4.10
BTT6030-1EKA characterization results data sheet 39 rev. 1.1, 2015-03-04 profet?+ 24v 9 characterizati on results the characterization have been performed on 3 lots, wit h 3 devices each. characteri zation have been performed at 8 v, 13.5 v and 18 v, from -40c to 160c. when no dependency to voltage is seen, only one curve (13,5v) is sketched. 9.1 general product characteristics 9.1.1 minimum functi onal supply voltage p_4.2.3 figure 29 minimum functional supply voltage v s(op)_min = f ( t j ) 9.1.2 undervoltage shutdown p_4.2.4 figure 30 undervoltage threshold v s(uv) = f ( t j ) 4,3 4,4 4,5 4,6 4,7 4,8 4,9 5 vs(op)_min 8v 28v 36v 3,8 3,9 4 4,1 4,2 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v 34 3,5 3,6 3,7 3,8 3,9 4 4,1 vs(uv)[v] 8v 28v 36v 3 3,1 3,2 3,3 3 , 4 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v
data sheet 40 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA characterization results 9.1.3 current consumption channel active p_4.2.5 figure 31 current consumption for whole d evice with load. one channel active i gnd_1 = f ( t j ;v s ) 9.1.4 standby current for whole device with load p_4.2.7, p_4.2.10 figure 32 standby current for whole device with load. i s(off) = f ( t j ; v s ) 9.2 power stage 9.2.1 output voltage drop li mitation at low load current p_5.5.4 0,004 0,005 0,006 0,007 0,008 0,009 ignd_1[a] 8v 28v 36v 0 0,001 0,002 0,003 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v 2,00e06 2,50e06 3,00e06 3,50e06 4,00e06 4,50e06 is(off)[a] 8v 28v 36v 0,00e+00 5,00e07 1,00e06 1,50e06 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v
BTT6030-1EKA characterization results data sheet 41 rev. 1.1, 2015-03-04 profet?+ 24v figure 33 output voltage drop limitation at low load current v ds(nl) = f ( t j ) and v ds(nl) = f ( v s ) 9.2.2 drain to source clamp voltage p_5.5.5 figure 34 drain to source clamp voltage v ds(az) = f ( t j ) 0 008 0,01 0,012 0,014 0,016 0,018 0,02 0,022 vds(nl)[v] 8v 28v 36v 0 0,002 0,004 0,006 0 , 008 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v 69 70 71 72 73 74 75 vds(az)[v] 8v 28v 36v 65 66 67 68 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v
data sheet 42 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA characterization results 9.2.3 slew rate at turn on p_5.5.11 figure 35 slew rate at turn on d v /d t on = f ( t j ; v s ), r l = 12 9.2.4 slew rate at turn off p_5.5.12 figure 36 slew rate at turn off - d v /d t off = f ( t j ; v s ), r l = 12 9.2.5 turn on p_5.5.14 figure 37 turn on t on = f ( t j ; v s ), r l = 12 0 0.2 0.4 0.6 0.8 1 1.2 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 dv/dt_on [v/s] junction temperature tj [c] 8v 28v 36v 0 0.2 0.4 0.6 0.8 1 1.2 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 dv/dt_off [v/s] junction temperature tj [c] 8v 28v 36v 7,5e05 1,0e04 1,3e04 1,5e04 ton[s]] 8v 28v 36v 0,0e+00 2,5e05 5,0e05 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v
BTT6030-1EKA characterization results data sheet 43 rev. 1.1, 2015-03-04 profet?+ 24v 9.2.6 turn off p_5.5.11 figure 38 turn off t off = f ( t j ; v s ), r l = 12 9.2.7 turn on / off matching p_5.5.16 figure 39 turn on / off matching t sw = f ( t j ; v s ), r l = 12 7,5e05 1,0e04 1,3e04 1,5e04 toff[s]] 8v 28v 36v 0,0e+00 2,5e05 5,0e05 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v 0,0e+00 2,5e05 5,0e05 tsw[s] 8v 28v 36v 5,0e05 2,5e05 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v
data sheet 44 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA characterization results 9.2.8 switch on energy p_5.5.19 figure 40 switch on energy e on = f ( t j ; v s ), r l = 12 9.2.9 switch off energy p_5.5.20 figure 41 switch off energy e off = f ( t j ; v s ), r l = 12 4,3 4,4 4,5 4,6 4,7 4,8 4,9 5 vs(op)_min 8v 28v 36v 3,8 3,9 4 4,1 4,2 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v 34 3,5 3,6 3,7 3,8 3,9 4 4,1 vs(uv)[v] 8v 28v 36v 3 3,1 3,2 3,3 3 , 4 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v
BTT6030-1EKA characterization results data sheet 45 rev. 1.1, 2015-03-04 profet?+ 24v 9.3 protection functions 9.3.1 overload condition in the low voltage area p_6.6.4 figure 42 overload condition in the low voltage area i l5(sc) = f ( t j ; v s ) 9.3.2 overload condition in the high voltage area p_6.6.7 figure 43 overload condition in the high voltage area i l28(sc) = f ( t j ; v s ) 70 75 80 85 90 95 100 il5(sc)[a] 8v 28v 36v 50 55 60 65 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v 28 30 32 34 36 38 40 il28(sc)[a] 20 22 24 26 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperature[c]
data sheet 46 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA characterization results 9.4 diagnostic mechanism 9.4.1 current sense at no load figure 44 current sense at no load i is = f ( t j ; v s ), i l = 0 9.4.2 open load detection threshold in on state p_7.5.2 figure 45 open load detection on state threshold i l(ol) = f ( t j ; v s ) 1 1,5 2 2,5 a tnoload[a] 8v 28v 36v 0 0,5 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100110120130140150 iis a junctiontemperature[c] 0,016 0,017 0,018 0,019 0,02 0,021 0,022 0,023 0,024 0,025 il(ol)[a] 8v 28v 36v 0,01 0,011 0,012 0,013 0,014 0,015 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v
BTT6030-1EKA characterization results data sheet 47 rev. 1.1, 2015-03-04 profet?+ 24v 9.4.3 sense signal maximum voltage p_7.5.3 figure 46 sense signal maximum voltage v s - v is(range) = f ( t j ; v s ) 9.4.4 sense signal maximum current p_7.5.7 figure 47 sense signal maximum current in fault condition i is(fault) = f ( t j ; v s ) 175 2 2,25 2,5 2,75 3 vis(range)[v] 8v 28v 36v 1 1,25 1,5 1 , 75 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 vs junctiontemperaturetj[c] 36v 0,015 0,02 0,025 0,03 i is(fault)[a] 8v 28v 36v 0 0,005 0,01 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 i junctiontemperaturetj[c] 36v
data sheet 48 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA characterization results 9.5 input pins 9.5.1 input voltage thr eshold on to off p_8.4.1 figure 48 input voltage threshold v in(l) = f ( t j ; v s ) 9.5.2 input voltage threshold off to on p_8.4.2 figure 49 input voltage threshold v in(h) = f ( t j ; v s ) 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 vin(l)[v] 8v 28v 36v 0,8 0,9 1 1,1 1,2 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 vin(h)[v] 8v 28v 36v 0,8 0,9 1 1,1 1,2 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v
BTT6030-1EKA characterization results data sheet 49 rev. 1.1, 2015-03-04 profet?+ 24v 9.5.3 input voltage hysteresis p_8.4.3 figure 50 input voltage hysteresis v in(hys) = f ( t j ; v s ) 9.5.4 input current high level p_8.4.5 figure 51 input current high level i in(h) = f ( t j ; v s ) 0,2 0,3 0,4 0,5 vin(hys)[v] 8v 28v 36v 0 0,1 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 junctiontemperaturetj[c] 36v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 iin(h) [a] junction temperature [ c] 8v 28v 36v
data sheet 50 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA application information 10 application information note: the following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. figure 52 application diag ram with BTT6030-1EKA note: this is a very simplified example of an application ci rcuit. the function must be verified in the real application. table 10 bill of material reference value purpose r in 10 k ? protection of the microcontroller dur ing overvoltage, reverse polarity guarantee BTT6030-1EKA channel is off during loss of ground r den 10 k ? protection of the microcontroller dur ing overvoltage, reverse polarity r pd 47 k ? polarization of the output for short circuit to v s detection improve BTT6030-1EKA immunity to electomagnetic noise r ol 1.5 k ? ensures polarizati on of the BTT6030-1EKA outpu t during open load in off diagnostic r is 1.2 k ? sense resistor a/d gnd micro controller den gnd vs r sense r den r is r in i/o out3 out4 in v dd i/o out vs gnd voltage regulator z c vs v bat is d r pd c sense r gnd out c out t 1 r ol
BTT6030-1EKA application information data sheet 51 rev. 1.1, 2015-03-04 profet?+ 24v 10.1 further application information ? please contact us to get the pin fmea ? existing app. notes ? for further information you may visit http://www.infineon.com/profet r sense 10 k ? overvoltage, reverse polarity, loss of ground. value to be tuned with micro controller specification. c sense 100 pf sense signal filtering. c out 10nf protection of the de vice during esd and bci r gnd 27 ? protection of the btt6030 -1eka during overvoltage d bas21 protection of the btt6030 -1eka during reverse polarity z 58 v zener diode protection of the devi ce during overvoltage c vs 100 nf filtering of voltage spikes at the battery line t1 dual npn/pnp switch the battery volt age for open load in off diagnostic table 10 bill of material (cont?d) reference value purpose
data sheet 52 rev. 1.1, 2015-03-04 profet?+ 24v BTT6030-1EKA package outlines 11 package outlines figure 53 pg-dso-14-47 ep (plastic dual small outlin e package) (rohs-compliant) green product (rohs compliant) to meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. gree n products are rohs-compliant (i.e pb-free finish on leads and suitable for pb-free soldering according to ipc/jedec j-std-020). pg-dso-14-33,-40,-43 v02 0.12 -0.085 8? max. 0?...8? 1.27 0.41 ?.09 2) a-b 0.2 m c 14x d seating plane (1.47) 1.7 max. stand off c c 0.08 -0.1 0.1 +0 8? max. 0?...8? 0.35 x 45? 3.9 ?.1 1) 0.1 d c2x ?.25 0.64 6 d d ?.2 0.2 m +0.06 0.19 8? max. a 17 8 14 b c 0.1 a-b 2x ?.1 8.65 index marking 6.4 bottom view ?.25 ?.25 2.65 7 1 14 8 2) does not include dambar protrusion of 0.13 max. 1) does not include plastic or metal protrusion of 0.15 max. per side 3) jedec reference ms-012 variation bb
BTT6030-1EKA revision history data sheet 53 rev. 1.1, 2015-03-04 profet?+ 24v 12 revision history version date changes 1.1 2015-03-04 chapter 4.1 - changed test condition of p _4.1.4 and adapted footnote, er ased footnote for p_4.1.3 chapter 4.3 /table 4 /footnote 2 - corrected misleading wording in text, p_4.3.2 updated rthja value chapter 4.3.2 - changed wording in title of figure 6 chapter 5 - corrected typo in text chapter 5.4 - corrected misleading wording in textchapter 6.1 - updated text chapter 6.1 - correct ed typo in text chapter 6.4 - corrected typo, changed rin recommendation to 10k chapter 6.5.1 - updated figure "current limitation (typical behavior)" chapter 6.5.2 - changed wording in text, updated figure "overload protection" chapter 7 - corrected typo in text chapter 7.3 - updated figure "current sense for nominal load" chapter 7.3.1 - updated figure "improved current sense accuracy with one calibration point" chapter 7.3.2 - updated figure "current sense settling / disabling timing" chapter 7.3.3.2 - corrected typo in text chapter 7.3.3.3 - corrected wording in text, updated figure "sense signal in open load timing" chapter 7.3.5 - changed wording in text chapter 7.3.6 - changed wording in text chapter 7.4 - p_7.5.9, p_7.5.10, p_ 7.5.11, p_7.5.12, p_7.5.17 updated chapter 7.4 - p_7.5.32 - changed name and symbol chapter 8.1 - correct ed typo in text chapter 8.2 - correct ed typos in text chapter 9 - update of figures, typos in legend corrected chapter 10 - updated applic ation diagram and bom table chapter 11 - updated package drawing 1.0 2013-08-07 creation of the datasheet
edition 2015-03-04 published by infineon technologies ag 81726 munich, germany ? 2015 infineon technologies ag all rights reserved. legal disclaimer the information given in this document shall in no event be regarded as a guarantee of conditions or characteris- tics. with respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, infineon technolo gies hereby disclaims any and all warranties and liabili- ties of any kind, including wit hout limitation, warranties of non-infringement of intellectual property rights of any third party. legal disclaimer for short-circuit capability infineon disclaims any warranties and lia bilities, whether expresse d nor implied, for any sh ort-circuit failures below the threshold limit. information for further information on technology, delivery terms and conditions and prices, please contact the nearest infineon technologies office ( www.infineon.com ). warnings due to technical requirements, components may contain dangerous substances. for information on the types in question, please contact the nearest infineon technologies office.


▲Up To Search▲   

 
Price & Availability of BTT6030-1EKA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X